Tom Demeyere

⊠ tom.dmre@gmail.com	𝔗 tomdemeyere.github.io	in tom-demeyere-091144b9	O tomdemeyere
Education			
University of Southampton,	Feb 2025		
• Coupling of Modern Compu	tational Techniques to Study th	ne Oxygen Reduction Reaction	
University of Lille/Jagielloni	2020		
• First year: "Molecular Dyna	mics and Chemical Reactivity"		
• Second year: "Advanced Spe	ectroscopy in Chemistry" (ASC)) done via Erasmus+	
University of Lille, Bachelor in Physics and Chemistry			2018
Research Experience			
Doctoral Research University of Southampton, School of Chemistry			2020 – 2024

• Developed a Grand-Canonical Monte Carlo code to predict catalyst oxidation

- Bridged the gap between thermodynamic and kinetic aspects of the Oxygen Reduction Reaction overpotential by making use of ML models with fundamental chemistry principles, establishing a new framework for catalyst behavior prediction
- Conceptualized novel research projects aiming to perform a thorough comparison between state-of-the-art solvation models by computing electrode capacitances, workfunctions, and solvation energies at metal-electrolyte interfaces.
- Partnered with Johnson Matthey, a global catalyst manufacturer, to bridge our computational predictions with experimental validation
- Created a framework using combinatorial optimization to identify stable crystal structures for solid electrolytes and applied locality-sensitive hashing algorithms to achieve O(n) time classification of 200M+ structures

Graduate Research Jagiellonian University, Faculty of Chemistry

2019 - 2020

- Developed framework to generate physically motivated initial configurations for solvent molecules in computational simulations
- Applied semi-empirical computational methods and successfully predicted water dissociation on TiO₂ Rutile low-index surfaces
- Computed binding energies and workfunction changes upon adsorption of croconic acid on semi-conductor surfaces for photocatalytic applications using the DFT+U implementation in the VASP software.

Honors Awards & Fellowships

Johnson Matthey Industrial PhD Fellowship, University of Southampton	2020 - 2024
International Mobility Grant, French Department of Education	2019 – 2020
Erasmus+ Scholarship for International ASC Master, Lille University	2019
Erasmus Fellowship for Research Internship, Jagiellonian University	2019
Merit Scholarship (Bourse de Mérite), French Department of Education	2014 - 2017

Open-source Contributions

Quansino (Author)

github.com/quansino 🗹

- Modular Monte Carlo Python code for sampling atomic configurations built upon ASE a core library, the code allows users to quickly build specific atomistic simulations they need
- The code have been developed following best coding practices, with thorough unit-testing and comprehensive documentation.

Atomic Simulation Environment (Developer)

- Frequently contributed to the development via various bugfixes and adding new functionalities such as new molecular dynamics thermostats and input/output interfaces for various DFT codes
- Familiar with the inner workings of ASE, a core computational chemistry library, enabling me to quickly integrate computational frameworks for specific academic projects

Quantum Accelerator (Contributor)

- Implemented multiple recipes for DFT codes and increased compatibility with workflow engines e.g. Parsl
- Proficient with workflow engines enabling rapid deployment of large-scale concurrent workflows

Publications

Bridging Oxide Thermodynamics and Site-Blocking: A Computational Study of ORR Activity on Platinum Nanoparticles	Dec 2024
Tom Demeyere, Tom Ellaby, Misbah Sarwar, David Thompsett, Chris-Kriton Skylaris	
10.1021/acscatal.5c00321 🗹 (ACS Catalysis)	
A Comparison of Modern Solvation Models for Oxygen Reduction at the Pt(111) Interface	Nov 2024
Tom Demeyere, Chris-Kriton Skylaris	
10.1021/acs.jpcc.4c04924 🗹 (The Journal of Physical Chemistry C)	
Multi-scale Modeling and Experimental Investigation of Oxidation Behavior in Platinum Nanoparticles	Oct 2024
Tom Demeyere, Husn-Ubayda Islam, Tom Ellaby, Misbah Sarwar, David Thompsett, Chris-Kriton Skylar	is
10.26434/chemrxiv-2024-72hfg 🗹 (In submission to RSC Physical Chemistry Chemical Physics)	
A Workflow for Identifying Viable Crystal Structures with Partially Occupied Sites Applied to the Solid Electrolyte Cubic Li7La3Zr2O12	Nov 2023
Julian Holland, Tom Demeyere, Arihant Bhandari, Felix Hanke, Victor Milman, Chris-Kriton Skylaris	
10.1021/acs.jpclett.3c02064 🗹 (The Journal of Physical Chemistry Letters)	

Conferences

Tom Demeyere, Tom Ellaby, Misbah Sarwar, David Thompsett, Chris-Kriton Skylaris (Apr 2024), Video recording: *Oxidation of Realistic Platinum Nanoparticles*, JMAC, Warwick, UK

Tom Demeyere, Tom Ellaby, Misbah Sarwar, David Thompsett, Chris-Kriton Skylaris (Mar 2024), Poster: *Unraveling the Oxidation of Realistic Platinum Nanoparticles using Linear Scaling DFT and Modern Forcefields*, CCP9, Chester, UK

Tom Demeyere, Tom Ellaby, Misbah Sarwar, David Thompsett, Chris-Kriton Skylaris (Apr 2023), Poster: *Degradation of platinum nanoparticles by oxidation using coupled computational methods*, JMAC, Warwick, UK

Tom Demeyere, Tom Ellaby, Misbah Sarwar, David Thompsett, Chris-Kriton Skylaris (Aug 2022), Poster: *Coupling of computational methods to study platinum based electrocatalysts under realistic conditions*, Psi-k Conference, Lausanne, Switzerland

Tom Demeyere, Tom Ellaby, Misbah Sarwar, David Thompsett, Chris-Kriton Skylaris (Mar 2022), Short oral presentation & Poster: *DFT simulations comparing Oxygen Reduction Reaction mechanism on Platinum 111 surface and nanoparticles*, JMAC, Warwick, UK

Tom Demeyere, Tom Ellaby, Misbah Sarwar, David Thompsett, Chris-Kriton Skylaris (Jan 2022), Poster: DFT simulations comparing Oxygen Reduction Reaction mechanism on Platinum 111 surface and nanoparticles, UKCC, Loughborough, UK

Teaching & Mentoring

ONETEP Masterclass

- July 2024
- Provided intensive one-on-one mentoring to graduate students, enabling them to successfully implement ONETEP DFT code in their research projects
- Designed and delivered a comprehensive course on scientific Python programming and the ASE-ONETEP inter-

gitlab.com/ase 🗹

github.com/quacc 🗹

face, including hands-on demonstrations and oral presentation

CHEM2034: Digital Chemistry University of Southampton

- Collaborated on developing an educational Jupyter Notebook implementing numerical solutions to the Schrödinger equation for the He atom
- Provided one-on-one mentoring during workshops, helping students understand and implement quantum mechanical calculations
- CHEM2025: Introduction to Programming University of Southampton

Sept 2021 – Dec 2021

Jan 2022 – June 2022

• Mentored students during practical Python workshops, guiding and helping them throughout the process.

Technologies

Programming Languages: Python, Julia, Fortran, Bash

Libraries: ASE, pymatgen, NumPy, SciPy, PyTorch, pandas, Matplotlib, scikit-learn, pytest, quacc

Software: Quantum Espresso, VASP, ONETEP, LAMMPS, JDFTx

Techniques: Core AI/ML techniques, Sampling techniques (MD, MC), DFT, Kinetic Modeling, Electrochemistry, Github Actions, HPCs

Languages

French: Native

English: Fluent

Additional Achievements

- Delivered presentations across multiple research groups, promoting research reproducibility through Jupyter Notebooks and best practices in scientific computing
- Helped over 1M students with Mathematics and Physical Chemistry on Socratic, a science Q&A platform
- Achieved five-star ranking in HackerRank problem-solving track with 200+ solved challenges